119 research outputs found

    Toward a Global Dispersive Optical Model for the Driplines

    Get PDF
    A dispersive-optical-model analysis has been performed for both protons and neutrons on 40,42,44,48Ca isotopes. The fitted potentials describe accurately both scattering and bound quantities and extrapolate well to other stable nuclei. Further experimental information will be gathered to constrain extrapolations toward the driplines.Comment: Invited talk at the "10th International Conference on Nucleus-Nucleus Collisions", Beijing, 16-21 August 200

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Origin and consequences of C12+C12 fusion resonances at deep sub-barrier energies

    Get PDF
    Previous explanations for the resonance behavior of C12+C12 fusion at low energies were based on a nonresonant compound-nucleus background and an additional contribution from a series of resonances. This separation into "resonance" and "background" contributions of the cross section is artificial. We propose to explain this phenomenon through the impact on the cross section of the relatively large spacings and the narrow widths of Mg24 compound levels in the corresponding excitation-energy region

    Analysis of proton-induced fragment production cross sections by the Quantum Molecular Dynamics plus Statistical Decay Model

    Get PDF
    The production cross sections of various fragments from proton-induced reactions on 56^{56}Fe and 27^{27}Al have been analyzed by the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM). It was found that the mass and charge distributions calculated with and without the statistical decay have very different shapes. These results also depend strongly on the impact parameter, showing an importance of the dynamical treatment as realized by the QMD approach. The calculated results were compared with experimental data in the energy region from 50 MeV to 5 GeV. The QMD+SDM calculation could reproduce the production cross sections of the light clusters and intermediate-mass to heavy fragments in a good accuracy. The production cross section of 7^{7}Be was, however, underpredicted by approximately 2 orders of magnitude, showing the necessity of another reaction mechanism not taken into account in the present model.Comment: 12 pages, Latex is used, 6 Postscript figures are available by request from [email protected]

    Prescission neutron multiplicity and fission probability from Langevin dynamics of nuclear fission

    Get PDF
    A theoretical model of one-body nuclear friction which was developed earlier, namely the chaos-weighted wall formula, is applied to a dynamical description of compound nuclear decay in the framework of the Langevin equation coupled with statistical evaporation of light particles and photons. We have used both the usual wall formula friction and its chaos-weighted version in the Langevin equation to calculate the fission probability and prescission neutron multiplicity for the compound nuclei 178^{178}W, 188^{188}Pt, 200^{200}Pb, 213^{213}Fr, 224^{224}Th, and 251^{251}Es. We have also obtained the contributions of the presaddle and postsaddle neutrons to the total prescission multiplicity. A detailed analysis of our results leads us to conclude that the chaos-weighted wall formula friction can adequately describe the fission dynamics in the presaddle region. This friction, however, turns out to be too weak to describe the postsaddle dynamics properly. This points to the need for a suitable explanation for the enhanced neutron emission in the postsaddle stage of nuclear fission.Comment: RevTex, 14 pages including 5 Postscript figures, results improved by using a different potential, conclusions remain unchanged, to appear in Phys. Rev.

    Exclusive light particle measurements for the system 19^{19}F + 12^{12}C at 96 MeV

    Get PDF
    Decay sequence of hot {31}^P nucleus has been investigated through exclusive light charged particle measurements in coincidence with individual evaporation residues using the reaction {19}^F (96 MeV) + {12}^C. Information on the sequential decay chain have been extracted by confronting the data with the predictions of the statistical model. It is observed from the present analysis that such exclusive light charged particle data may be used as a powerful tool to probe the decay sequence of the hot light compound systems.Comment: 13 pages, 8 figures, Physical Review C (in press

    Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions

    Full text link
    The defining characteristics of fragment emission resulting from the non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are presented. Charge correlations and average relative velocities for mid-velocity fragment emission exhibit significant differences when compared to standard statistical decay. These differences associated with similar velocity dissipation are indicative of the influence of the entrance channel dynamics on the fragment production process

    Quasi-fission reactions as a probe of nuclear viscosity

    Full text link
    Fission fragment mass and angular distributions were measured from the ^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed data analysis was performed, using the one-body dissipation theory implemented in the code HICOL. The effect of the window and the wall friction on the experimental observables was investigated. Friction stronger than one-body was also considered. The mass and angular distributions were consistent with one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was developed in order to predict reaction time scales required to describe available data on pre-scission neutron multiplicities. The multiplicity data were again consistent with one-body dissipation. The cross-sections for touch, capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev

    Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments

    Get PDF
    Momentum widths of the primary fragments and observed final fragments have been investigated within the framework of an Antisymmetrized Molecular Dynamics transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It is found that the secondary evaporation effects cause the values of a reduced momentum width, σ0\sigma_0, derived from momentum widths of the final fragments to be significantly less than those appropriate to the primary fragment but close to those observed in many experiments. Therefore, a new interpretation for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid Communicatio
    corecore